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Abstract

I use coarse Bayesian updating to explain three stylized facts: trading anoma-

lies around major stock market milestones, excess price volatility and trade volume,

and heavy-tailed prices. When expectations are coarse and traders are heteroge-

neous, traders make heterogeneous mistakes. This disagreement generates substan-

tial trade volume and I show that the ensuing price discovery process converges in

distribution to an empirically relevant class of Lévy processes. Notably, I obtain

this result without any exogenous shocks or processes; the only exogenous ran-

dom variable is a heterogeneity parameter drawn at time zero. I then establish a

perfectly non-revealing equilibrium: because traders are different, their aggregated

trades generate volatile prices, yet this volatility impedes traders from learning

their differences.
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1 Introduction

In his book Irrational Exuberance, Shiller (2015) offers a compelling yet underexplored

explanation for non-fundamental price volatility, which he calls quantitative anchors. He

describes these as “levels of the market that some people use as indications of whether

the market is over- or underpriced and whether it is a good time to buy.” As possible

anchors, he suggests the nearest milestone of a prominent index such as the Dow or the

nearest round number. I formalize this idea by assuming that traders use coarse Bayesian

updating. I then show that my model explains three stylized facts: trading anomalies

observed near major stock market milestones, excess price volatility and trade volume,

and heavy-tailed price distributions. Notably, I derive my results without assuming any

exogenous information arrival or i.i.d. shocks; when traders trade based on heterogeneous

expectation errors, it is the ensuing price discovery process which generates volatility.

Coarse Bayesians select the most likely posterior from an exogenous set of posteriors.

These possible posteriors can be thought of as “competing theories of the world,” from

which traders select the one closest to Bayes’ Rule. The interpretation is of unmodeled

cognitive costs of attention. In the simplest possible example, there is a continuum of

prices for a single financial asset, yet a coarse Bayesian can only form expectations over

a low or high price. The trader classifies all prices to the left of some cutoff with the low

expected price, and similarly all prices to the right of the cutoff with the high expected

price. These two “regimes” should be thought of as a bull and bear market. Hetero-

geneous coarse Bayesians may not agree on where the bear market ends and the bull

market begins. And this is precisely the motive for trade: sellers and buyers must, by

construction, observe the same price today. But a seller believes she is in a bear market

and hence that the asset is overpriced, which is why she sells. A buyer believes he is in

a bull market and hence that the asset is underpriced, which is why he buys. Because

there is no exogenous news or fundamental value, this is a model of technical trading:

traders view prices today and extrapolate prices tomorrow (with error due to their coarse

beliefs). These are technical traders who use rules of thumb.

The final participant in my economy is a market maker who attempts to clear mar-

kets by raising price when there is excess demand and lowering price when there is excess

supply. Notice this is a model of disequilibrium; per period, markets may not clear and

the market maker would have to absorb these excess positions. It is this trial-and-error,
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or price discovery, process which I show to be volatile. In Figure 1, I compare the price

discovery process in a calibrated economy to the S&P 500 for a one-year period.

Figure 1: S&P 500 versus Model Simulation

Instead of conventional models where exogenous information arrival generates volatile

prices, here traders disagree due to their coarse beliefs, this disagreement leads to large

trade volumes, and the ensuing price discovery process is shown to be volatile. In my

main theoretical result, I show that this price discovery process converges in distribution

to a Brownian motion as coarseness tends to zero (and the standard Bayesian case is

recovered). The following quote from Bagehot (1971) provides the perfect summary of

my model’s microstructure:

It is well known that market makers of all kinds make surprisingly little use

of fundamental information. Instead they observe the relative pressure of buy

and sell orders and attempt to find a price that equilibrates these pressures.

The resulting market price at any point in time is not merely a consensus of

the transactors in the marketplace, it is also a consensus of their mistakes.

Under the heading of mistakes we may include errors in computation, errors

of judgment, factual oversights and errors in the logic of analysis.

Even with substantial trade volume generated by coarse expectations, prices may still

be non-random due to laws of large numbers, which may be invoked when there are

3



many traders.1 However, the market maker considered here does not scale prices using a

factor 1
n

as in standard models (where n denotes the number of traders), and this causes

prices to converge not to a steady state, but in distribution. I show that this alternative

market maker can be established from a reasonable set of assumptions. The combination

of coarse expectations and this non-Walrasian market maker results in a volatile price

discovery process.

Trading anomalies around stock market milestones are studied empirically by Donaldson

and Kim (1993). The authors find that the Dow Jones Industrial Average tends not

to cross increments of one hundred; the index faces “resistance” levels from above and

“support” levels from below. Having broken through an increment of one hundred, or

what they call a price barrier, the Dow Jones Industrial Average then moves more than

otherwise warranted. Price barriers demarcate market regimes as defined in Day and

Huang (1990), for example bull and bear markets. Returning to my simple example with

either a low or high expected price, the cutoff between these two regimes acts precisely

as a price barrier. As prices approach the cutoff from below, traders believe the asset is

overpriced in a bear market; the resulting selling puts downward pressure on prices. As

prices approach the cutoff from above, traders believe the asset is underpriced in a bull

market; the resulting buying puts upward pressure on prices. In this way, price barriers

arise endogenously in my setting.

In the main extension to my model, I match empirically relevant trade volume and

price return moments. While the lack of trading volume generated in standard rational

expectations models is well-known (Campbell (2017)), my model generates power law

trade volume. Notably, I do not assume power law shocks; the result holds for a broad

family of exogenous random variables. Instead, my (necessary and) sufficient assumptions

relate to trader preferences: when they trade aggressively based on perceived arbitrage

opportunities, trade volume converges in distribution to a power law. Figure 2 compares

trade volume predicted by my model to the S&P 500 daily volume for a three year period

ending on August 31, 2021.2

It is also well-known that empirical price returns do not conform to a normal distribu-

tion (Hoechstoetter et al. (2005)); instead, returns have heavy tails. Using the same

1For an example of this, see Aiyagari (1994).
2The power law coefficient in this calibration is α = 1.9.
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Figure 2: Trade Volume Histogram

calibration as in Figure 2, in Figure 3 I plot stable-α returns predicted by my model

versus the S&P 500 daily returns for the same three year period. Like with large trade

volumes, aggressive trades based on perceived arbitrage opportunities lead to large price

movements (i.e. heavy tails). And like with trade volume, I do not assume heavy-tailed

prices; I show that prices converge in distribution to heavy-tailed prices for a broad fam-

ily of exogenous random variables.

I establish an equilibrium in the following way. Traders myopically believe prices are

volatile; at first this is a strange belief because there are no exogenous shocks. However,

based on their coarse beliefs, I show that traders trade. Via my market maker, trade is

translated into price movements and I show that prices converge in distribution precisely

to the original trader belief. So traders believe prices are volatile, trade based on this

belief, and generate this volatility in reality.

The only exogenous random variable in my model is a heterogeneity parameter drawn

at time zero. Because this parameter is realized at time zero, I must consider whether

traders can learn each other’s demands (and hence learn the future price path) from the

information contained in prices. Prices are not invertible for the following reason. De-

mand functions considered here are not monotone: for small price changes, asset demand

functions are downward sloping for the usual reasons. However, for large price changes,
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Figure 3: Price Returns Histogram

traders use higher prices today as indications of higher prices tomorrow and discretely

shift their expectations upward. Demand functions that are not mathematically one-to-

one lead to a pricing function that is not one-to-one; this leads to non-revealing prices

in the sense of Radner (1979). That is, there are multiple demands that could have gen-

erated the same price. I call the solution concept a perfectly non-revealing equilibrium:

it is the disagreement that generates volatile prices, and it is the volatility that impedes

traders from learning their differences. Even though all random variables have been re-

alized at time zero, they are not revealed through information contained in prices and

hence traders are unable to predict future prices. This approach presents a compelling

alternative to i.i.d. shocks over time assumed in many models today.

Literature

Leading explanations for fundamental asset price volatility amplify exogenous risk. For

example, the habit formation model (Campbell and Cochrane (1999)) uses utility curva-

ture to amplify shocks, and the long-run risks model (Bansal and Yaron (2004)) uses per-

sistent shocks to alter long-run expectations. The disaster risks literature (Barro (2006))

assumes a jump process on top of the standard Brownian motion. In contrast, here I will

not assume any exogenous driving process. Competing explanations for non-fundamental

volatility identify asset mispricing. For example, overconfident traders over-react to news

(Daniel et al. (1998)); price movements are amplified with herd behavior and informa-
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tion externalities (Park and Sabourian (2011)); and bubbles can persist when there are

coordination issues (Abreu and Brunnermeier (2003)). In contrast to mispricing at a

fixed moment in time, here I will consider volatility defined as the second moment of a

stochastic process.

My model addresses concerns about the lack of trading volume generated in standard ra-

tional expectations models compared to what is empirically observed (Campbell (2017)).

Cochrane (2007) went so far as to suggest that the next revolution in asset pricing will

consist of models that can explain empirically observed levels and patterns of trading

volume. While this debate goes back to Milgrom and Stokey (1982) and Varian (1989),

a more recent paper by Alvarez and Atkeson (2021) hits empirically relevant volume

moments using shocks to risk aversion. Here, heterogeneous expectation errors are what

generate substantial trade volume.

Coarse Bayesian updating, which nests standard Bayesian updating as a special case, is

axiomatized by Jakobsen (2021) and is related to categorical thinking from Mullainathan

(2002) and hypothesis testing from Ortoleva (2012).3 The original intent of this litera-

ture was to address a growing set of experimental findings refuting the standard Bayesian

model. The set of posteriors over which an agent must optimally select (optimal in the

sense of minimal deviation from Bayes’ Rule) induces categories, or competing theories of

the world; in my setting these will exactly correspond to market regimes. Mullainathan

(2002) points out that this type of behavior naturally creates under- and over-reactions to

information. That is, some data may not be “drastic enough” to induce a change in the

posterior category (under-reactions); however, other data that induces a change in cate-

gory may move the posterior more than in the standard Bayesian case (over-reactions).

I will show that coarse Bayesian updating is capable of generating momentum and re-

versals over the asset price time series as well.

The idea of learning from information revealed in prices was formally introduced by

Radner (1979). While fully and partially revealing equilibria have been studied by many

subsequent authors, the current paper investigates perfectly non-revealing equilibria. For

an example of a partially revealing equilibrium, see Allen (1985) who assumes that price

3Behaviors similar in spirit to coarse Bayesian updating have been applied to financial market settings
by Eyster and Piccione (2013), Gul et al. (2017), and Steiner and Stewart (2015). These authors, however,
do not study non-fundamental volatility.
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observations are noisy. Polemarchakis and Siconolfi (1993) study a fully non-revealing

equilibrium, which obtains from indeterminacy of equilibrium prices. Here, prices are

perfectly non-revealing without any reliance on additional noise or multiplicity.

An endogenous Brownian motion price process has, in itself, drawn considerable atten-

tion. One literature has derived a Brownian motion price process from rational traders

who are subject to an exogenous Brownian motion. Pakkanen (2010) derives Brown-

ian prices from noise in the demand function, and Raimondo (2005) derives geometric

Brownian prices by assuming endowments and asset returns follow a geometric Brow-

nian motion. Deriving a Brownian motion by assuming yet another Brownian motion

is unsatisfactory to some degree, and is not the goal of the present exposition. A sec-

ond literature derives the Brownian motion by deviating from the utility maximization

paradigm. Horst and Rothe (2008) solve for a Brownian motion by assuming a Poisson

process for order arrivals and agent switching, and Cox et al. (1979) find a Brownian

motion as a limit of simple coin flips. In my model, traders are fully rational, aside from

their coarse expectations.

The remainder of the paper is organized as follows. In Section 2, I provide a simpli-

fied version of the model defining coarse expectations, deriving non-monotone demands,

and plotting price paths that resemble a random walk for some parameter values and

price barriers for others. In Section 3, I lay out the assumptions required for my equilib-

rium. In Section 4, I show that prices are non-revealing and analytically prove that prices

converge in distribution to a Brownian motion, establishing the desired equilibrium. In

Section 5, I extend the result to heavy-tailed distributions in equilibrium and discuss

policy. Section 6 concludes.

2 Simplified Model

Random Walk

Time is discrete and infinite t = 0, 1, 2, .... There are n traders who observe today’s

price pt of a single durable asset that pays no dividends, then form expectations about

tomorrow’s price pt+1. Because there is no exogenous information arrival in this model,

this could be viewed as a form of technical trading. Preferences are mean-variance over
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wealth wt+1:

E[u(wt+1)|pt] =E

[
wt+1 −

ρ

2
w2
t+1

∣∣∣∣pt]
subject to wealth being derived from capital gains:

wt+1 = (pt+1 − pt)xt

where holdings of the asset are given by xt and risk aversion is given by ρ. The constraint

is kept intentionally simple so as to only capture the speculative motive for trade.4 Note

that I have implicitly assumed that traders have access to an unlimited line of credit at

zero interest rates. Traders guess (and must later verify in equilibrium) that prices are

a unit-variance martingale E[pt+1|pt] = pt, so there is no expected gain or loss. For now,

this is simply taken as a form of myopia. Under this guess, the demand function takes

the following form:

x(pt) =
E[pt+1|pt]− pt

ρ
(1)

and there would be no trade in my model due to the martingale guess, E[pt+1|pt] = pt.

Instead, I deviate from this standard setup and assume that traders form expectations

using coarse Bayesian updating. Consistent with the axiomatization of coarse Bayesian

updating in an abstract setting (see Jakobsen (2021)), I assume posteriors are chosen

from an exogenous, fixed set P . The interpretation is that traders face unmodeled cog-

nitive costs of attention beyond this coarse set of posteriors P .

In my application to financial markets, I assume that this set P consists of all distri-

butions with a mean in the set {`ε}`∈Z, where Z denotes the set of all integers. That is,

expectations are restricted to an equally-spaced grid with spacing ε. The equal spacing

assumption is made in the spirit of empirical applications, such as whole numbers (Shiller

(2015)) and price barriers (Donaldson and Kim (1993)). If ε = 1, traders think in terms

of integers, and if ε = 100, traders think in terms of hundreds. As ε → 0, the trader

becomes Bayesian and considers the entire number line. The coarse expectation is then

4While this trader may seem myopic in the sense that she does not look beyond period (t+ 1), this
is without loss of generality in such a simple setup. This is a problem of speculation, not savings.
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defined:

Ẽ[pt+1|pt] =argminp|p− E[pt+1|pt]| s.t. p ∈ {`ε}`∈Z
=argminp|p− pt| s.t. p ∈ {`ε}`∈Z

(2)

The first line of the formula above says that traders pick the closest posterior mean to the

true expected value of prices, E[pt+1|pt]. The second line of the formula follows from the

martingale guess. Altogether, (2) reads: traders believe prices are as close as possible

to a martingale. The interpretation is that traders use simple “rules of thumb.” For

example, even if the price of milk is a martingale, shoppers may quote $2.00 instead of

the actual price paid today of $1.89. Note that (2) is a not a restriction on the support

of the posterior, only on its mean. Hence traders are not surprised when they see a price

pt+1 outside their grid; this is simply viewed as a realization not equal to the mean. In

Figure 4, I have combined equations (1) and (2) and plotted the demand function with

ε = ρ = 1.

Figure 4: Demand Function

Demand curves slope downwards for the usual reasons. However, at certain prices, the

trader uses higher prices today as a signal for higher prices tomorrow and shifts her de-

mand upwards. The fact that she uses prices today to predict prices tomorrow follows

from the martingale guess. And demand shifts discretely because expectations (the de-

mand intercept) shift discretely. Each downward-sloping interval should be interpreted
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as a regime, for example a bull and bear market. Figure 4 captures the notion of a trigger

strategy. For example, when prices fall below the threshold pt = 0.5, investors liquidate

their positions, commonly known as the stop-loss order (Lei and Li (2009)).

As noted by Mullainathan (2002), coarse Bayesians can both under-and over-react to

news. Here, the news is simply the current price realization. Say pt−1 = 1 in Figure 4, so

the prior is E[pt+1|pt−1] = 1. For modest price changes, for example pt = 1.4, the poste-

rior remains unchanged, E[pt+1|pt] = 1. This represents an under-reaction with respect

to a standard Bayesian. For larger price changes, for example p̃t = 1.6, the posterior

moves more than that of a Bayesian, E[pt+1|p̃t] = 2. This represents an over-reaction.

There are some trades that lead to price reversals (say prices rise to pt = 1.4, which

induces selling), and others that induce price momentum (say prices rise to p̃t = 1.6,

which induces yet more buying).

My economy is populated by n coarse Bayesians indexed by j, who are heterogeneous

based on one parameter. I capture this heterogeneity in a particularly tractable way:

with a scalar shift parameter rj which shifts their demands horizontally, and hence shifts

regimes horizontally. Traders may disagree on where the bear market ends and the bull

market begins. For this reason, I call this heterogeneity parameter the reference point.

More formally, I assume that traders have heterogeneous posteriors Pj, where Pj consists

of all distributions with a mean in the set {rj + `ε}`∈Z. The coarse expectation equation

(2) is then updated to:

Ẽj[pt+1|pt] = argminp|p− pt| s.t. p ∈ {rj + `ε}`∈Z (3)

I assume that rj is drawn independently across traders at time t = 0 from a standard

normal distribution; so traders tend to agree, but not entirely, on the location of regimes.5

Notice that rj is a heterogeneity parameter drawn at time zero, not a per-period shock.

Also note that equations (1) and (3) together define a demand function based on coarse

expectations, which I denote x(pt, r
j).

Finally, instead of implicitly assuming market clearing prices each period, I explicitly

model a market maker who attempts to clear markets. She observes prices today pt and

aggregate demand zn(pt, r) =
∑

j x(pt, r
j) and chooses pt+1 to maximize the following

5Heterogeneous spacing εj is covered both later in this example and in Section 5.
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objective:6

H (pt+1 − pt, zn(pt, r)) = c(pt+1 − pt)zn(pt, r)−
1

2
(pt+1 − pt)2

In the first term, the market maker increases (decreases) price when there is positive

(negative) excess demand. In the second term, the market maker adjusts prices as little

as possible. The parameter c > 0 captures the relative weight the market maker places

on correctly signing (versus minimizing) price adjustments. Notice that when aggregate

demand is zero zn(pt, r) = 0, the market maker settles prices at the steady state.7 The

first-order condition yields a simple linear rule:8

pt+1 = pt + c
∑
j

x(pt, r
j) (4)

This market maker explicitly carries out the price discovery process, and the ensuing

dynamics are reminiscent of the classical tâtonnement (trial-and-error) process. Per

period, markets may not clear and the market maker would need to absorb these extra

positions; in this sense, this is a model of disequilibrium. Traders trade, the market

maker adjusts price accordingly, and the process repeats. With a starting price p0, (1),

(3), and (4) describe a dynamical system. Figure 5 shows the first 500 iterations of

the nonlinear map (1), (3), and (4), where parameters have been chosen as p0 = 1000,

n = 1000, and c = 0.1. The three price paths correspond to different draws of rj, holding

all other parameters fixed.

The price paths follow something that resembles a random walk to the naked eye, from

nothing more than heterogeneous traders with coarse expectations. This volatile price

discovery process is not driven by any exogenous shocks, but instead by trade volume

that stems from trader disagreement on whether the asset is under- or over-priced. Some

traders buy, thinking that the asset is under-priced in a bull market; others sell, thinking

that the asset is over-priced in a bear market.

Price Barriers

6r denotes the vector [r1, ..., rn].
7One benefit of this market maker over one who minimizes the distance between supply and demand

is a lower informational requirement. This market maker only needs to observe the value of aggregate
demand, not its functional form.

8The model of Kyle (1985) employs a similar linear market maker.
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Figure 5: Price Paths

With small ε = 1 as in Figure 5, traders are close to being Bayesian. With large ε = 100

as in Figure 6, traders are far from Bayesian. Expectations can take on only a restrictive

set of values, and as in the price barriers literature, this leads to prices that tend to stay

above “support” levels and below “resistance” levels at increments of 100. The intervals

between price barriers, for example pt ∈ [1000, 1100] in Figure 6, correspond one-to-one

with market regimes, which were the continuous portions of demand in Figure 4. As

prices near the upper (lower) limit of a regime, selling (buying) pressure tends to keep

prices within that regime. In Figure 6, the distribution over rj has been adjusted to

N(50, 625), and parameters to ε = 100, p0 = 1000, n = 15, c = 1.5, and ρ = 5. If I

were to send the variance of the distribution over rj to infinity, the price path begins to

resemble a random walk. It is the agreement between traders, captured by the relatively

small standard deviation of this distribution (standard deviation is 25), that makes price

barriers so pronounced in Figure 6.

Albeit only informally so far, I have nested two extreme cases within the Motivating

Example. As the grid size ε gets smaller, prices begin to resemble a random walk. When

the grid ε is calibrated to a large number, price dynamics match those described in the

price barriers literature. Reality likely consists of a combination of these two cases. In

fact, to match the S&P data in Figure 1, the model was calibrated with 85% of the pop-
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Figure 6: Price Barriers

ulation thinking in terms of integers (ε = 1), and the remaining 15% thinking in terms of

hundreds (ε = 100). Parameters were kept the same as each Motivating Example, except

p0 = 3500.31, n = 1000, and c = 0.1.9

In the remainder of the paper, I will justify assumptions made in this example − an

important one is that traders believe prices are a martingale − and discuss in what sense

prices converge to a random walk.

3 Model Assumptions

In this section, I state my assumptions; some generalize the previous setup, while others

restrict it. As a starting point, I consider second-order Taylor series expansions of both

a generalized market maker objective Hn(pt+1 − pt, zn(pt, r)) and trader utility function

Ẽj[u(wt+1)|pt]. For now, I continue to treat the martingale guess as a form of myopia; I

will return to this issue in Section 4, where I establish my equilibrium.

Market Maker

9To select the proportion 85/15, reference points were drawn 2000 times for each proportion, and the
closest price path (in terms of `1) to the S&P was selected. Hence the claim is that there exists a set of
reference points consistent with the S&P, not that my model predicts future prices out-of-sample.
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The Taylor series expansion yields a linear market maker rule:

pt+1 = anzn(pt, r) + bnpt + cn

where, as before, zn(pt, r) denotes aggregate demand. This starting point is for nothing

more than tractability. There are likely many interesting non-linear market maker rules;

however, the analysis here will focus on the linear case. I allow constants an, bn, and cn

to depend on the number of traders n. My first two assumptions place restrictions on

these three constants.

A1: an, bn, and cn are selected so pt+1 → pt in probability ⇐⇒ limn→∞ zn(pt, r) = 0.

A2: For fixed pt, pt+1 converges in distribution as n→∞.

A1 is a necessary and sufficient condition for price convergence, in line with the market

microstructure literature (Farmer and Joshi (2002), Kyle (1985)). If A1 did not hold, the

market maker might have to absorb nonzero excess demand positions into perpetuity.

Notice that the sufficient direction (⇐) of A1 places the following restrictions on the

market maker rule as n→∞:

pt+1 = pt + anzn(pt, r) (5)

That is, bn tends to one and cn tends to zero. The weaker of the two assumptions is A2.

Prices must converge in the weakest possible sense; stated another way, prices do not

diverge. While weak, A2 does impose a scaling property on the market maker’s constant

an: as there are more traders, prices respond less sensitively to each. One scaling that

may immediately come to mind is a Walrasian market maker an = 1
n
.10 Because excess

demands are centered around zero, I could then invoke the weak law of large numbers and

claim that pt+1 → pt in probability. But the proposed rule of flat prices, irrespective of

the the realization of excess demand, is nonsensical and violates the necessary direction

(⇒) of A1. In my first lemma, I show that, without loss of generality, I can consider the

following market maker rule:

pt+1 = pt +
czn(pt, r)√

n
(6)

10Many notable models implicitly assume the Walrasian market maker when they normalize the mass
of agents to one. For example, see Aiyagari (1994).
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where c is a constant that does not depend on n. This rule will allow me to invoke

central limit theorems, instead of laws of large numbers as in many standard models

(see Aiyagari (1994)). Prices will then converge in distribution, not in probability. In-

tuitively, this non-Walrasian market maker (6) allows prices to move more freely than a

Walrasian one. If, instead of A1, I had considered A1′, where pt+1 → pt in probability

⇐⇒ limn→∞
1
n
zn(pt, r) = 0, then the Walrasian market maker would have been a viable

candidate. I argue that price convergence when there is zero aggregate demand (A1) is

more reasonable than when there is zero demand per capita (A1′).

Lemma 1 (Market Maker): For any linear market maker rule that satisfies A1-A2,

there is an alternative rule described by (6) that achieves the same resulting price distri-

bution as n→∞.

Proof : See Appendix A.

Unlike a problem where the normalization constant is given and one might make use of

standard sufficient conditions for invoking the central limit theorem, here convergence

was assumed and the normalization constant was derived using lesser known necessary

conditions for the central limit theorem. Recall the interpretation of (6) given in Section

2: it is the first-order condition of a market maker objective. This objective had two com-

ponents: on one hand the market maker had an incentive to correctly sign price changes,

and on the other she had an incentive to minimize price movements. Equation (6) in-

deed correctly signs price changes: it maps excess demand into higher prices and excess

supply into lower prices. Furthermore, (6) scales the sensitivity of the response based on

the number of traders; price movements are dampened as the number of traders increases.

Traders

A second-order Taylor series expansion of trader utility yields the demand function (1)

from Section 2; hence I do not generalize in this direction. My final two assumptions are

imposed on risk aversion ρ and the distribution of reference points rj.11

A3: Traders are risk-neutral in the sense that ρ ∼ ε.

11f(ε) is on the order of ε, f(ε) ∼ ε, if limε→0
f(ε)
ε = 1.
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A4: rj are i.i.d. across traders with a tight and absolutely continuous distribution.

As previously discussed, small ε represents the standard Bayesian benchmark. In A3,

I assume that ρ ∼ ε and therefore limε→0 ρ = 0; traders are risk-neutral. The intent

of sending ε to zero is to recover the case of the Bayesian trader. But because traders

believe prices are a martingale, risk-averse traders with correct expectations will choose

not to trade. Risk-neutrality is an unintended but understandable condition to avoid

this no-trade result.

A4 is a strict generalization of the Motivating Example; the standard normal imposed

in the example was entirely unnecessary. Importantly, these reference points are i.i.d.

across traders, but not over time. These traders are born different and stay different. A

distribution F is tight if for all δ > 0 there exists M such that F (M)−F (−M) ≥ 1−δ. In

words, probability mass cannot escape to infinity. And finally, an absolutely continuous

distribution has a density.12 Tightness and absolute continuity are not without loss of

generality, but the family of distributions considered under A4 is very broad.

To summarize, these four assumptions A1-A4 include two on the market maker and

two on traders. Because A2 and A4 are extremely weak, A1 and A3 should be thought

of as the assumptions with the most “bite.” A3 ensures nonzero trade when ε→ 0, and

A1 ensures prices are a nondegenerate random variable when n→∞.

My upcoming results will apply more generally than to linear demands (which follow from

second-order Taylor expansions of utility). These Taylor expansions were introduced only

for clarity of exposition. In Appendix B, I introduce three additional assumptions, which

generalize linear demands at the expense of being more technical, for which my results

hold. Put differently, the second-order Taylor series expansion of utility is one special

case of the additional assumptions A5-A7. Upcoming proofs are written for the more

general case.

12This rules out degenerate rj .
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4 Equilibrium

In this section, I establish an equilibrium in the following sense. Traders believe prices

are drawn from some distribution (because there are no shocks, this is a strange belief!).

Based on their coarse beliefs, I have shown they trade; and based on the market maker

rule, prices move. I need to show that the distribution to which prices converge is pre-

cisely the one from traders’ initial beliefs. In short, traders trade based on volatile price

beliefs, and it is their trades that generate this volatility in reality. The main result

in this section will be that prices converge in distribution to a discrete time Brownian

motion.

Incomplete Information

Before establishing my equilibrium, I must formally address trader beliefs and learn-

ing. The traders in this setting are different, and I assume that each knows only her own

rj; hence this is a setting with incomplete information. Asset returns, at least in the first

period, are random variables because they are a function of rj. Each subsequent period,

I allow traders to observe that period’s price pt (and only this information), and allow

them to condition their demands on this realization. The question then becomes: What

do traders learn from the information revealed in prices? Put another way: Are traders

able to learn from disequilibrium? As intuition suggests, with fixed n and ε, traders

would successfully and fully learn each other’s information in finite time. Instead of

modelling this learning process, I consider conditions under which learning fails entirely

(not as an assumption, but as a result).

While rj differ from information as defined in standard models, there is nonetheless

an incentive for traders to learn the random vector r = [r1, ..., rn]. Say one sophisticated

trader learns the entire vector r, while all others learn nothing. The sophisticated trader

can infer the aggregate demand function, and hence the future price path, leading to

arbitrage opportunities even with coarse expectations.

The next lemma provides conditions under which prices will never reveal trader infor-

mation. Effectively, I am slowly lifting the trader’s myopia, but considering conditions

under which their beliefs coincide with the myopic case. When I make claims about non-
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revealing prices, the result is not a product of coarse beliefs; they hold for any Bayesian.13

Lemma 2 (Non-Revealing Prices): Given pt, a linear market maker, and assum-

ing A1-A5, price increments (pt+1− pt) and references points rj are independent random

variables as n→∞ or as ε→ 0.14

Proof : See Appendix C.

I allow traders to condition trades based on the realization pt, and I want to know if they

can infer any information about rj. If they are independent random variables as stated

in Lemma 2, the answer must be that traders infer nothing. Notice that the lemma is

a very strong statement: traders learn nothing about reference points, so that learning

fails even with an arbitrary number of price observations. If rj were to be interpreted as

a trader’s private information, the lemma says that prices never reveal any information.

And this happens for two reasons.

The large number of traders intuitively washes out any individual’s price contribution.

Each individual’s price contribution is normalized by the market maker constant 1√
n
, and

so is zero in the limit. It is intuitive that, when there are an infinite number of traders,

each must have zero price impact. When each trader does not even impact the price,

inverting that price to learn an individual rj becomes impossible.

Recall that ε→ 0 represents a Bayesian trader. In this case, prices become non-revealing

in the sense of Radner (1979). Imagine an extreme case with only one trader; the periodic

demands proposed here are not one-to-one. Figure 7 captures the lack of invertibility:

prices tomorrow could be used to back out aggregate demand, given by x. Today’s price

is given by p. All four points, rj1, r
j
2, r

j
3, and rj4, are viable candidates for the reference

point which generated this demand. As ε→ 0 and the period of demand functions tend

to zero, non-invertibility problems are further exacerbated.15

13Non-revealing prices, if constrained to coarse beliefs, are a weaker result. Because I take limits ε→ 0
and recover the Bayesian special case, the stronger result is needed.

14Two random variables with densities fxn and fyn are independent in the limit if
limn→∞ fxn,yn(x, y) = limn→∞ fxn(x)fyn(y).

15The reader might wonder why this multiplicity in rj even matters; they all generate the same demand.
First, this lemma is a stepping stone to the main result, which is that traders must not learn others’
demands. Second, it is not immediately clear that {rj + `ε}`∈Z is a sufficient statistic for the demand
function. Consider a case where there are many (but finite) traders, so that a single price observation is
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Figure 7: Partially Revealing Prices

Why do I send n → ∞ and ε → 0? One potential answer is that we truly believe

there are many risk-neutral Bayesian traders, and another is that we want to understand

in what sense the non-asymptotic version of the model approximates an equilibrium.

There is a third and more candid reason, which is for tractability. Computing coarse ex-

pectations when traders learn some nonzero information from prices requires modelling

higher-order beliefs (how traders believe other traders learn); common knowledge of non-

revealing prices alleviates such issues.

The notion of asymptotically independent random variables is non-standard. The defini-

tion reads: in the limit, the joint density can be written as the product of two densities.

But outside the limiting point, the interpretation is less clear. For any fixed n and ε,

prices and reference points are not independent; independence is a Boolean (either true

or false). Let me first reiterate the lemma: prices converge in distribution to a random

variable that is independent from reference points. But an alternative and more intuitive

interpretation will be discussed later in this section: for any precision statistical test for

independence, there exists an n and ε such that the test will return a positive result.

Brownian Prices

insufficient for learning all information. Traders would need to combine the data observation with the
prior, the distribution over rj , to form their posterior. This prior has location (it is not periodic), and
hence the posterior is over rj (not the entire set {rj + `ε}`∈Z).
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Next I work towards establishing a perfectly non-revealing equilibrium: aggregated trades

induce a Brownian motion price process, yet the price process impedes traders from

learning their differences. The previous lemma directly addressed the second part of the

statement, and my main proposition, discussed next, addresses convergence to a Brown-

ian motion.

Proposition 1 (Brownian Prices): Assuming A1-A7 and a linear market maker, prices

converge in distribution to a discrete time Brownian motion as ε→ 0 and n→∞.

Proof : See Appendix D.

As the number of traders tends to infinity, the aggregate demand function begins to re-

semble noise centered around zero over the price domain. It is a random object, but it is

static in the sense that it is drawn at time t = 0. With the appropriate scaling guaran-

teed by Lemma 1, the central limit theorem can be applied to conclude that aggregate

demand at any price is normally distributed.

However, of the requirements of a Brownian motion, it is not the normality that should

come as a surprise. More surprising is the i.i.d. nature of price increments over time,

which is equivalent, via the linear market maker, to the i.i.d. nature of excess demand

over the price domain. To see how this works, consider periodic demands with an in-

creased frequency induced by smaller ε. Take any initial distribution over reference points

like the normal denoted by the red curve in Figure 8. Split the domain into increasingly

smaller, equi-spaced intervals as shown by the black demand lines. The demand function

takes probability mass from each interval and folds it across the range of the function,

effectively stretching out probability mass as interval sizes tend to zero. At extremely fine

partitions, only the shape of demand curves − not the original distribution − matters for

determining the excess demand distribution. This observation, combined with the fact

that demand is periodic, implies that excess demand becomes identically distributed at

any price as ε tends to zero. This could be seen analytically in the proof of Lemma 2,

when the characteristic function for demand lost all dependence on the initial distribu-

tion of heterogeneity, h(r), as ε→ 0.
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Interestingly, this “folding and stretching” also creates independently distributed demand

across the price domain. This could be seen analytically in the proof of Proposition 1,

when the covariance between demand evaluated at two different prices tended to zero as

ε→ 0. Although proofs apply more generally, in the linear demand example depicted in

Figure 8, excess demand approaches a uniform distribution independently of any price

pt and any initial distribution h(r) as ε→ 0.

pt

x(pt)

Figure 8: Folding and Stretching

Equilibrium

Finally, I address the assumption of myopia on the part of traders. Although previ-

ously traders simply guessed that prices are a unit-variance martingale, the discrete time

Brownian motion satisfies these two properties and hence this guess is confirmed. I

can now define a δ-equilibrium, which is a set of demand functions x(pt, r
j), a perceived

stochastic process for prices characterized by measure µb, and an actual stochastic process

for prices with measure µ satisfying:

(a) Given µb, x(pt, r
j) solves each trader’s optimization problem.

(b) The market maker rule implies that d(µb, µ) ≤ δ.16

16While it is not the only choice, one metric that may be used here is lim supT→∞DT , where DT is
defined in Appendix E.

22



I call the special case when δ = 0 a perfectly non-revealing equilibrium. And an immedi-

ate corollary of Lemma 2 and Proposition 1 is that a discrete time Brownian motion is

a perfectly non-revealing equilibrium as n → ∞ and ε → 0. When δ = 0, what makes

this otherwise-standard equilibrium definition perfectly non-revealing is that the random

variable rj is drawn only once. I allow traders to condition their trades on past price

realizations, yet they learn nothing about the process (µbt = µb for all t) beyond its

realization.

In a standard model of speculative trade, Brownian prices are a result of exogenous

information arrival. Here, Brownian prices are a result of price discovery, with consid-

erable trade volume generated by coarse beliefs. However, these two narratives are not

at odds with one another. One could construct a model with both informed traders who

receive a signal (a martingale) and coarse Bayesians who do not receive a signal. In sim-

pler terms, this market would consist of both fundamental and technical traders. While

the equilibrium price process may differ from a Brownian motion, coarse Bayesians act

exactly as described above and generate the noise typically assumed in standard models.

That is, one use case for the results derived here is a microfoundation for noise trading.

Now consider δ-equilibria with ε > 0. Because traders make ε-sized errors when form-

ing beliefs, and because these errors are heterogeneous, it is impossible for all traders

to agree with one another, let alone on equilibrium prices. To allow for these errors, I

relax the equilibrium concept up to some predetermined error band δ > 0. Intuitively, δ

should be thought of as a number proportional to (or equal to) ε. This gives the following

interpretation: although traders have heterogeneous coarse expectations, they must be

as correct as they can be about equilibrium prices, given their constraint. I maintain the

limit n→∞ so I can continue to invoke Lemma 2, prices are non-revealing, and traders

never learn their differences.

With nonzero ε, the resulting distribution of price increments is neither independent

nor identically distributed. It is normally distributed by the central limit theorem. It

follows from arguments in Proposition 1 that the resulting distribution of price incre-

ments approaches N(g1(ε), g2(ε)) where limε→0 g1(ε) = 0 and limε→0 g2(ε) = (t2 − t1).

And this is intuitive. Imagine a price path like that of Figure 6 with large ε. Prices fail

to be a martingale; prices near the edge of a regime tend to revert toward the center

of the regime. The variance also becomes non-stationary, because traders tend to trade
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larger volumes near the edges of each regime. This highlights an important difference

between the δ-equilibrium with δ > 0 and ε > 0 (a non-martingale which is not robust

to rational arbitrage) and the perfectly non-revealing equilibrium (a martingale which is

robust to rational arbitrage).

There are, in fact, two reasons why the equilibrium must be defined using a relaxed

distance between beliefs and reality. The first reason, mentioned above, relates to the

mean of the belief. Traders are constrained to have heterogeneous posterior means so

they can never agree with each other, let alone on the correct equilibrium process. The

second reason relates to the variance of the belief: the unit-variance guess is incorrect

when ε > 0. While a natural next step might be to have traders form beliefs over the

complicated process shown in Figure 6 (a non-martingale with non-stationary variance),

I refrain from this exercise for the following reason. It is a highly complex exercise from

the perspective of traders, which goes against the very spirit of my narrative: traders use

approximations and rules of thumb. Instead, when ε > 0, I let traders form an incorrect

(but simple) guess, which I have shown to be a very good guess for small but nonzero

values of ε.

Numerical Interpretation

I have shown that prices converge in distribution to a discrete time Brownian motion

as n→∞ and ε→ 0; this is the large market, risk-neutral, Bayesian limit of my model.

Here I offer an interpretation of this statement off of the limiting point, that is, for finite

n and nonzero ε. For any precision statistical test, there exist N and E such that, for

n ≥ N and ε ≤ E, the test cannot distinguish between the system (1), (3), and (6) and a

Brownian motion. At these non-asymptotic values, prices look like a Brownian motion.

For details of this Kolmogorov-Smirnov test, see Appendix E.

The highlights of the exercise are as follows. The test, as well as the naked eye, can

easily distinguish between the dynamical system and a Brownian motion when ε = 100

(see Figure 6). The test cannot distinguish between the dynamical system and a Brow-

nian motion when ε = 1 (see Figure 5) when less than 75 iterations of the system are

considered. As the number of iterations under consideration is increased, ε must tend to

zero and n must tend to infinity rather quickly for the test to be unable to distinguish

between the system and a Brownian motion.
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The Econometrician

The discussion can quickly become philosophical when considering an omniscient econo-

metrician who knows the realization r. To her, the price path is a pre-determined trajec-

tory indistinguishable from a draw of a Brownian motion. It is only from the perspective

of the traders who populate this economy that the price path is stochastic. To them,

there is an aggregate demand function that determines prices, and that function is i.i.d.

over its domain. It is drawn at time t = 0. Traders observe individual realizations of

this aggregate demand function through the information revealed in prices, but precisely

due to its i.i.d. nature, these realizations reveal nothing about the global shape of the

aggregated demand function. Traders remain in a state of ignorance well past time t = 0,

and hence are unable to predict the future price path.

The key to my result is that I do not allow traders to observe (and condition trades

on) others’ reference points rj. Each trader’s information is restricted to only observing

prices pt, and I show that these prices are non-revealing. An appropriate analogy might

be a die that is rolled, but covered by the dealer’s hand. If there is no hope of peaking

around the dealer’s hand, the die is treated in a similar fashion to one that has yet to

be rolled. All random variables are realized at time zero, but they are not revealed to

traders through the information contained in prices.

In Appendix F, I consider a scenario where the realization r is known to the econo-

metrician, and both n <∞ and ε > 0 are fixed. I show that, to the econometrician, the

dynamical system is chaotic but perfectly deterministic.

5 Extensions and Policy

There are several immediate extensions to the model. To achieve a geometric Brownian

motion from Black and Scholes (1973), I redefine prices in logs. Otherwise, the deriva-

tion from the previous sections is used; it is the percentage change in price that is now

normally distributed.

The discrete time Brownian motion can be rescaled to one that assigns probability one
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to paths that are uniformly continuous; see Durrett (2017) Theorem 7.1.2 for a formal

treatment. The valuable learning from the continuous time limit comes from the rescal-

ing. The market maker constant must be redefined with an additional factor of 1√
T

,

where T denotes the frequency of trade in the time interval [0, 1]. Intuitively, there is an

invariance to whether there are more traders n or a higher frequency of trade T .

Heavy-Tailed Distributions

In my main extension, I extend the Brownian motion price process to a broader family of

heavy-tailed distributions. The question of which family of distributions best describes

stock market returns has yet to be settled empirically; however, many studies find sup-

port for the stable-α family first proposed by Benoit Mandelbrot and Eugene Fama in

the 1960’s (Hoechstoetter et al. (2005), Lux (1996), Rachev et al. (2005)). There is also

a theoretical reason for focusing on the stable-α family mentioned in the proof of Lemma

1. The Durrett necessary and sufficiency condition states that a summed and normal-

ized i.i.d. sequence can only converge to a stable-α law. Therefore, the only theoretical

candidate for price increments is the stable-α law, making this extension, in some sense,

maximal.

I choose to maintain assumptions A1-A3 for the same reasons outlined previously. Re-

laxing A4 is the key to breaking the Durrett necessary and sufficient condition; non-i.i.d.

reference points can lead to an even broader family of price distributions. While this is

an interesting line of reasoning for future work, in the current paper I leave A4 as is.

A5 remains intact: differentiable utility allows me to take first-order conditions. The

assumptions I will need to revisit, A6 and A7, relate to the magnitude and scaling of

demand. In words, these two assumptions state that demand must be square integrable

(not too large) and centered (zero mean); see Appendix B for their formal descriptions.

In fact, the Mikosch necessary and sufficient condition from the proof of Lemma 1 gives

the exact condition required to achieve stable-α price increments.

In words, this condition states that demand volume must follow a power law. Although

it is derived as a necessary and sufficient theoretical condition, there is also extensive

evidence that trading volume does, in fact, obey a power law (Gabaix et al. (2003),

Plerou et al. (2004), Balakrishnan et al. (2008)). Power law tails imply that demands

are unbounded; there are prices where traders desire arbitrarily large positions based on
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perceived arbitrage opportunities. Figure 9 shows a plausible demand function satisfy-

ing these conditions. Like in the Motivating Example, market regimes arise from coarse

expectations. The only difference is that traders now trade more aggressively near the

edge of these regimes.

Figure 9: Unbounded Demand

Figure 9 is in the spirit of Black (1986), who claimed the farther the price of a stock gets

from its value, the more aggressive traders become. Day and Huang (1990) also discuss

similarly shaped demands, but they are not periodic. I now formally replace assumptions

A6 and A7 with:

A6′: Power law demand volume,
∫ 0.5

−0.5 1{|(L′)−1(p)|>y}dp ∼ ky−α for 1 < α < 2 and k > 0.

A7′: Demand is symmetric, L(−x) = L(x) ∀x.

Both assumptions are imposed on the generalized loss function L(x) in trader utility

functions, described by:

u(rj, pt, xt) = (Ẽj[pt+1|pt]− pt)xt − ρL(xt) (7)

where L(x) was previously quadratic in the case of the Brownian motion. One inter-

pretation of (7) is a higher-order Taylor series approximation, where ρ now represents
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aversion to higher moments. The first-order condition is:

L′(xt) =
Ẽj[pt+1|pt]− pt

ε

which holds for small ε, assuming A3. Then demand functions are explicitly defined by

taking the inverse, x(p) = (L′)−1(p). A6′ says that the mass of prices at which demand

volume |x(p)| is greater than y is asymptotically y−α, up to the factor of a constant.17

While this is only an assumption on the shape of demand functions, arguments provided

in Appendix G show that this implies that the demand volume (the random variable)

follows a power law. A6′ is consistent with power law volumes observed empirically, and

is (almost) a necessary condition theoretically for heavy-tailed price distributions. Any

further weakening would need to stay within the Mikosch necessary and sufficient condi-

tion.18 Intuitively, this new loss function penalizes the trader at a much lower rate than

the quadratic loss, leading to much higher trade volumes. These higher trade volumes,

in turn, lead to higher probability of tail events (heavy-tailed prices).

Most empirical studies indicate that the relevant range for stable-α price increments

is 1 < α < 2. An additional reason for omitting the case α = 2 is that it corresponds to

the Brownian motion already explored in the previous section. When α ≤ 1, the mean of

price increments is undefined, making coarse expectations not well-defined. A6′ replaces

A6; square integrable demands were what previously guaranteed finite second moments,

which allowed me to apply the central limit theorem.

A7′ is a slight strengthening of the previous A7, and is for tractability only. Intuitively,

traders receive the same disutility from selling as buying. While it may be intuitive

that the loss function being even implies demand symmetry, it follows formally from the

17The range of integration, [−0.5, 0.5], is the range of the right-hand side of the first-order condition,
and hence the domain of the function x(p).

18Such weakening involves slowly varying functions and o(1) terms as described in Appendix A.
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following line of logic: ∫ 1
2

− 1
2

1{p>L′(y)}dp =

∫ 1
2

− 1
2

1{p<−L′(y)}dp ∀y

⇐⇒
∫ 1

2

− 1
2

1{p>L′(y)}dp =

∫ 1
2

− 1
2

1{p<L′(−y)}dp ∀y

⇐⇒
∫ 1

2

− 1
2

1{x(p)>y}dp =

∫ 1
2

− 1
2

1{x(p)<−y}dp ∀y

where the first equality follows from the symmetry of a Uniform[−1
2
, 1
2
] random variable,

the second equality follows from A7′ and the fact that L(x) being even implies L′(x) is

odd, and the last equality follows from the definition of demand. While some studies find

an asymmetry between positive and negative asset returns, these results are still highly

debated (see Jondeau and Rockinger (2003)), and so I choose to proceed with symmetric

demands.

My final proposition shows that these updated assumptions are sufficient to conclude that

prices converge in distribution to a Lévy process with stable-α price increments. Much

like the Brownian motion, the Lévy process has stationary and independent increments.

The price increments are now expanded from the normal to the heavy-tailed stable-α

family.

Proposition 2 (Heavy-Tailed Prices): Assuming a linear market maker, A1-A5,

A6′, and A7′, prices converge in distribution to a discrete time Lévy process with stable-

α increments as ε→ 0 and n→∞.

Proof : See Appendix G.

In a setting where price increments are proportional to excess demand, a necessary con-

dition for heavy-tailed prices is unbounded demand: traders trade aggressively based on

perceived arbitrage opportunities. In Appendix G, I show that the market maker must

adjust her scaling from 1√
n

to 1
n1/α ; that is, she must restrict price movements more so

than in the Brownian case. The net effect is heavy-tailed prices.

Finally I am ready to characterize equilibrium as in the previous section. A corollary of
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Lemma 2 and Proposition 2 is that a discrete time Lévy process with stable-α increments

is a perfectly non-revealing equilibrium as n → ∞ and ε → 0. Note that Figures 2 and

3 from the Introduction, which plot power law volume and stable-α prices, respectively,

satisfy the conditions of this last proposition.

Proposition 2 holds true assuming that trader preferences are given by (7). However, an

implicit assumption made in condition (7) requires a careful reinterpretation. In the pre-

vious case of the Brownian motion, the variance of price increments, Var[pt+1−pt|pt] = 1,

multiplied the quadratic loss term. For any α < 2, all price moments higher than the first

are undefined. While this is not problematic at an intuitive level because of neutrality

to risk (and higher moments), in Appendix H, I outline a formal mathematical alterna-

tive. This last observation highlights a broader takeaway: risk neutrality is a necessary

condition for nonzero trade in any model with heavy-tailed stable-α prices.

Heterogeneous ε

When ε is large, I have argued that the definition of equilibrium must be relaxed to

accommodate disagreement in posteriors. Instead of considering heterogeneous ε in such

a relaxed setting, I consider a stronger result. I ask whether heterogeneous ε can be

supported in a perfectly non-revealing equilibrium. Since, by definition, grid size will

need to tend to zero, I consider a setting with heterogeneous grids and let the coarsest

partition (and hence all partitions) tend to zero.

Details of this exercise are relegated to Appendix I. The intuition is the following: I

define heterogeneous i.i.d. groups of individuals, and apply previous arguments group-

by-group. Then I make use of a general property of stable-α, and hence also normally

distributed, random variables: linear combinations of independent stable-α random vari-

ables also have stable-α distributions.

Policy

Instead of evaluating welfare from the perspective of traders with coarse expectations, I

take it as given that volatility has negative overall welfare implications. This should not

be overly controversial, and would be justified in the presence of additional risk-averse

traders who choose to avoid volatile markets. In the case of a Brownian motion, a pro-
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portional capital gains tax is effective at reducing volatility as measured by the variance

of price increments. The new trader utility function would be defined:

u(rj, pt, xt) = (1− τ)(Ẽj[pt+1|pt]− pt)xt −
ε

2
x2t

where τ is the capital gains tax. The tax multiplies the previous demand functions, and

ultimately multiplies the market maker rule:

pt+1 = pt + (1− τ)
czn(pt, r)√

n

The resulting normal distribution for price increments will have a dampened variance as

desired.

The capital gains tax is, however, ineffective in the case of Lévy prices because vari-

ance is undefined. With unbounded demand, policies targeted at restricting arbitrarily

large trade volumes are more effective. A social planner can impose trading constraints

for individual traders such that demand must stay within some range |x(pt)| ≤ M . M

can be made large so that constraints bind rarely. Truncated demand functions are now

square integrable; in fact, any bounded function is square integrable.19 Then Proposi-

tion 1 applies, and prices converge in distribution to a Brownian motion. So trading

constraints on both long and short positions can be used to alter the equilibrium price

distribution from one of heavy tails to a standard Brownian motion with finite variance.

A combination of the two policies guarantees that the variance of price increments will

be dampened as desired.

6 Conclusion

There are three main takeaways from the paper. First, a connection between coarse ex-

pectations and price barriers was established. When traders’ expectations were restricted

to take on only a discrete set of possible values, demand discontinuities naturally arose.

A discontinuity was interpreted as a cutoff between regimes such as a bull and bear

market, and provided a foundation for trigger strategies like the stop-loss order. Under-

and over-reactions, as well as momentum and reversals, could be explained using coarse

expectations. Price barriers could be supported in equilibrium when beliefs and reality

19This last statement is true on any finite measure space.
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could differ by no more than δ.

Second, a perfectly non-revealing equilibrium was established in the risk-neutral Bayesian

limit. Equilibrium consisted of two components. First, there was a belief of a particular

stochastic process. Instead of explicitly modelling trader learning and price invertibility,

I considered conditions under which such learning fails entirely. Under the large market

or risk-neutral Bayesian limit, traders learned nothing from price and entered into the

second period with the same information set as in the first. The other half of equilibrium

was the trader’s action. Given a belief of a particular stochastic process, aggregated

trades were shown to confirm that price process in reality: coarse beliefs led to disagree-

ment and sizeable trade volume, and the ensuing price discovery process converged to a

Brownian motion. Altogether, in equilibrium, traders induced a Brownian motion price

process because of their differences, yet it was this very process that impeded traders

from learning their differences.

Surprisingly, neither of the two nonstandard assumptions required for the perfectly non-

revealing equilibrium consisted of coarse Bayesian updating. As coarseness tended to

zero, the standard Bayesian case was recovered. However, trader risk-neutrality amplified

even the smallest expectation errors to ensure nonzero trade. The second nonstandard

assumption related to the market maker; prices were scaled in such a way that they

converged to an equilibrium distribution, as opposed to a steady state equilibrium.

Third, I showed that the same mechanism discussed for a Brownian motion was capable

of generating heavy-tailed price distributions in equilibrium. The necessary condition for

such heavy tails was unbounded demand, or prices at which traders traded arbitrarily

large amounts based on their coarse expectations. In terms of policy, I find that trading

constraints on excessive trade volume can eliminate heavy tails in equilibrium. In the

case of the simpler Brownian motion, a capital gains tax is effective at reducing the vari-

ance of price increments.

Throughout the paper, I have discussed several avenues for future work, such as con-

sidering a nonlinear market maker, adding informed traders, and relaxing the i.i.d. re-

quirement across traders. Two broader questions remain; the first is: To which other

markets might this mechanism apply? Stock markets were a natural starting point, due

to not only the “rule of thumb” interpretation for technical traders but also the tick
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size interpretation for algorithmic trading. Perhaps the broadest open question relates

to the fact that coarse expectations were not a necessary component of the equilibrium

established here; these simply guaranteed nonzero trade. Any heterogeneity that creates

a “noisy” aggregate demand function would suffice: the irregularities in excess demand

prevent traders from learning their differences, and their differences are what create an

irregularly shaped aggregate demand. Why are prices volatile? Many macroeconomic

models assume shocks, many finance models assume noise traders, and here I have shown

that volatility can arise from heterogeneous mistakes. If the question of the origin of fi-

nancial market fluctuations is to be taken seriously, we must investigate our differences

that make us trade.
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Appendices

Appendix A

To prove Lemma 1, first I begin with the linear rule (5), which follows from A1. Dur-

rett (2017) Theorem 3.8.8 states that Y is the limit of a summed and normalized i.i.d.

sequence Xi if and only if Y has a stable law; I will refer to the result as the Durrett

necessary and sufficient condition. Therefore, if anzn(pt, r) converges to a nondegenerate

distribution (it converges either to a degenerate or nondegenerate distribution by A2), it

must be in the stable-α family. The parameter α nests several important distributions:

α = 2 is the Gaussian, and α = 1 is the Cauchy.

Mikosch (1999) Theorem 1.4.7 states that a summed and normalized sequence of i.i.d.

random variables with distribution F converges to a stable-α law for α < 2 if and only

if:

F (−x) =
q + o(1)

xα
S(x), 1− F (x) =

p+ o(1)

xα
S(x), x→∞

for slowly varying S(x) and nonnegative p, q such that p + q > 0; I will refer to the

result as the Mikosch necessary and sufficient conditions.20 Since demand functions in

(1) are bounded, the case α < 2 is ruled out. The only remaining possibility is the

normal α = 2, for which we can apply the standard Lindeberg-Lévy theorem. Now say

anzn(pt, r) converges to a degenerate distribution, in other words, a constant. If a ran-

dom variable converges in distribution to a constant, it converges in probability to that

constant. By the sufficient direction (⇐) of A1, the constant must equal zero. But then

pt+1 → pt in probability, which contradicts the necessary direction (⇒) of A1, and the

proof is complete.

Appendix B

In a more general setting, I assume that traders get utility and disutility from trade

according to:

u(rj, pt, xt) = (Ẽj[pt+1|pt]− pt)xt − ρL(xt)

20A slowly varying function S(x) satisfies limx→∞
S(tx)
S(x) = 1 for all t > 0. Examples include functions

with a nonzero limit and ln(x).
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where L(xt) is the disutility function, which was previously quadratic. These preferences

can be interpreted as a higher-order Taylor series approximation, where ρ now represents

aversion to higher moments. With this generalized setup, I introduce three assumptions

on traders that supplant the previous second-order Taylor series approximation:

A5: L(x) is strictly convex and differentiable.

A6: Demand functions are square integrable,
∫ 0.5

−0.5 ((L′)−1(p))
2
dp <∞.

A7: Demand functions have zero mean,
∫ 0.5

−0.5(L
′)−1(p)dp = 0.

A5, A6, and A7 are assumptions on the generalized loss function L(xt). As ε → 0, I

simply write ρ = ε by A3. Then demand is now implicitly defined by the following

first-order condition, when L(xt) is convex and differentiable:

L′(xt) =
Ẽj[pt+1|pt]− pt

ε
= mod

(
rj − pt
ε
− 1

2
, 1

)
− 1

2
(8)

where the second equality follows from explicit calculation of the updating rule. Hence, I

denote the demand function as x(p) = (L′)−1(p). The class of demand functions consid-

ered under (8) are periodic with period ε. As in the Motivating Example, the periodic

nature of demand stems from traders discretely shifting price expectations at regular

price intervals. A6 says that demands must be square integrable,
∫ 0.5

−0.5 x(p)2dp < ∞,

which translates to demands that are not too large.21 A7 says that traders are just as

likely to buy as they are to sell; this will ensure that the resulting prices are a martingale.

In the special case of quadratic utility, A5 holds and (L′)−1(p) is the identity function.

Then it is an algebraic exercise to verify that both A6 and A7 are satisfied.

Appendix C

To prove Lemma 2, I begin with asymptotics in n. The price increment is given by

(6):

pt+1 − pt =
czn(pt, r)√

n

21The range of integration, [−0.5, 0.5], is the range of the right-hand side of (8), and hence the domain
of the function x(p).
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Two random variables are independent if and only if their characteristic functions sep-

arate: ϕ(s1, s2) = ϕ(s1)ϕ(s2). Here I denote ϕ(s1) as the characteristic function of

normalized excess demand when n → ∞, which exists by A2, and ϕ(s2) as the charac-

teristic function of a reference point rj. For simplicity of notation, I solve for individual

one; the same argument applies to all individuals. Also, for brevity, I omit the constant

c, which does not affect independence. h(r) denotes the density of the reference point,

which exists by A4. Then:

ϕn(s1, s2)

=E

[
exp

(
is1

1√
n

n∑
j=1

x(pt, r
j) + is2r

1

)]

=

∫ ∞
−∞

...

∫ ∞
−∞

exp

(
is1

1√
n

n∑
j=1

x(pt, r
j) + is2r

1

)
n∏
j=1

h(rj)drj

=

∫ ∞
−∞

...

∫ ∞
−∞

exp

(
is1

1√
n

n∑
j=2

x(pt, r
j)

)
exp

(
is1

1√
n
x(pt, r

1) + is2r
1

) n∏
j=1

h(rj)drj

=

∫ ∞
−∞

...

∫ ∞
−∞

exp

(
is1

1√
n

n∑
j=2

x(pt, r
j)

)
n∏
j=2

h(rj)drj
∫ ∞
−∞

exp

(
is1

1√
n
x(pt, r

1) + is2r
1

)
h(r1)dr1

→ϕ(s1)

∫ ∞
−∞

exp(is2r
1)h(r1)dr1

where the fourth equality follows from the independence guaranteed by A4, and the

asymptotic result follows from dominated convergence. Notice that the same argument

above can now be applied to the two-period-ahead price increment:

pt+2 − pt =
c√
n

n∑
j=1

x(pt, r
j) +

c√
n

n∑
j=1

x(pt+1, r
j)

Applying the same line of reasoning above to the two-period-ahead increment, the fourth

equality now holds because pt+1 and rj are asymptotically independent. This logic then

recursively applies to any price increment pt+s − pt.22 For the asymptotic result in ε, I

consider an extreme case with n = 1. I again manipulate the joint characteristic function,

22This general result is stronger than what is needed for the statement of the lemma, but will be
referenced in later propositions.
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now making use of the demand functional form (8):

ϕε(s1, s2) =

∫ ∞
−∞

exp

(
is1x

[
mod

(
r − pt
ε
− 1

2
, 1

)
− 1

2

]
+ is2r

)
h(r)dr

=
∞∑

`=−∞

∫ pt+(`+1)ε

pt+`ε

exp

(
is1x

[
mod

(
r − pt
ε
− 1

2
, 1

)
− 1

2

]
+ is2r

)
h(r)dr

=
∞∑

`=−∞

∫ 1

0

exp(is1x [mod (u− 0.5, 1)− 0.5])exp(is2[pt + ε(u+ `)])h(pt + ε(u+ `))εdu

=

∫ 1

0

exp(is1x [mod (u− 0.5, 1)− 0.5])
∞∑

`=−∞

exp(is2[pt + ε(u+ `)])h(pt + ε(u+ `))εdu

where the third equality follows from a change of variable u = r−pt
ε
− `, and the fourth

equality from dominated convergence. The sum in the expression above is a Riemann

sum,
∑∞

`=−∞ exp(is2x
∗
`)h(x∗`)ε, with:

x∗` = pt + ε(u+ `)

x`−1 = pt + ε`

x` = pt + ε(`+ 1)

so that the function is always evaluated at a point within the Riemann partition x`−1 ≤
x∗` ≤ x`, and the length of the partition tends to zero x` − x`−1 = ε. I can then rewrite

the characteristic function:

ϕε(s1, s2) =

∫ 1

0

exp(is1x [mod (u− 0.5, 1)− 0.5])
∞∑

`=−∞

exp(is2x
∗
`)h(x∗`)εdu

→
∫ 1

2

− 1
2

exp(is1x(u))du

∫ ∞
−∞

exp(is2x
∗)h(x∗)dx∗

where again I have used dominated convergence and explicitly calculated the range of

the modulo term. Riemann sums converge to Riemann integrals on compact intervals

only. If the distribution is tight by A4, then the measure along the entire real line can

be approximated by an appropriately large compact interval.

Appendix D
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To prove Proposition 1, first I recursively solve (6) from Lemma 1:

pt2 − pt1 =

t2−1∑
t=t1

czn(pt, r)√
n

The goal is to show that the term above is normal with appropriate mean and variance.

In order to do so, I choose to manipulate its characteristic function ϕn,ε(s). Let T denote

the set {t1, ..., t2}, and let S denote the set {q, t | t1 ≤ t < q ≤ t2 − 1}. For now I guess

that a joint density fT (×q,t,∈S pqt) for price increments pqt ≡ (pq − pt) exists; this will

later be verified. In general, the density may depend on T, and it is defined over the

product of all price increments. The absolute continuity assumption A4 guarantees the

existence of a density h(r), which I use next in the manipulation of the characteristic

function:

ϕn,ε(s) =E

[
exp

(
t2−1∑
t=t1

isczn(pt, r)√
n

)]

≈
∫ ∞
−∞

...

∫ ∞
−∞

exp

(
t2−1∑
t=t1

n∑
j=1

iscx(pt, r
j)√

n

)
n∏
j=1

h(rj)drjfT(·)
∏
q,t∈S

dpqt

=

∫ ∞
−∞

...

∫ ∞
−∞

(∫ ∞
−∞

exp

(
t2−1∑
t=t1

iscx(pt, r
1)√

n

)
h(r1)dr1

)n

fT(·)
∏
q,t∈S

dpqt

In the approximate equality, I have applied the argument provided in Lemma 2: the

independence of reference points and general price increments pt+s − pt. This will hold

with equality when limits are taken. In the last equality, I have used the i.i.d assumption

A4 for random variable rj. Expectations are taken over both reference points and future

prices; this is a necessary condition when considering prices multiple periods ahead.23

23To see why, consider prices two periods ahead. These depend on excess demand today and tomorrow,
which are a function of prices tomorrow.
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Then, using a Taylor series expansion, the characteristic function equals:1 +
is√
n
ET

[
t2−1∑
t=t1

cx(pt, r
1)

]
− s2

2n
ET

(t2−1∑
t=t1

cx(pt, r
1)

)2
+ ET[ξ(n, s)]

n

=

1− s2

2n
ET

[
c2

t2−1∑
t=t1

x(pt, r
1)2

]
︸ ︷︷ ︸

variance

− s
2

n
ET

[
c2
∑
t,q∈S

x(pq, r
1)x(pt, r

1)

]
︸ ︷︷ ︸

covariance

+ET[ξ(n, s)]︸ ︷︷ ︸
error


n

where the second equality follows from the fact that demand is centered, A7. I call the

second term in the large parenthesis the variance term, and the third term in the large

parenthesis the covariance term. The final term is the Taylor series error. As before,

expectations ET[·] are taken with respect to both h(·) and fT(·). I first manipulate the

variance term, for now ignoring the outer integral over prices:

c2
∫ ∞
−∞

x(pt, r
1)2h(r1)dr1 =c2

∫ ∞
−∞

x

(
mod

[
r1 − pt
ε
− 1

2
, 1

]
− 1

2

)2

h(r1)dr1

=c2
∞∑

`=−∞

∫ pt+(`+1)ε

pt+`ε

x

(
mod

[
r1 − pt
ε
− 1

2
, 1

]
− 1

2

)2

h(r1)dr1

=c2
∞∑

`=−∞

∫ 1

0

x (mod [u− 0.5, 1]− 0.5)2 h(pt + ε(u+ `))εdu

=c2
∫ 1

0

x (mod [u− 0.5, 1]− 0.5)2
∞∑

`=−∞

h(pt + ε(u+ `))εdu

→c2
∫ 1

2

− 1
2

x(u)2du = 1

with an appropriate choice of the normalization constant c. Notice that the last expres-

sion is well defined by A6.24 The third equality above follows from a change of variables

u = r1−pt
ε
− `, and the fourth equality follows from dominated convergence, which ap-

plies due to A6. Using the same Riemann sum technique as Lemma 2, the sum inside

the integral approaches the value one as ε → 0. The entire variance term approaches
s2

2n
(t2 − t1) even after the integral over prices is taken; the expectation of a constant is

that constant. Next I manipulate the covariance for a fixed (q, t); for brevity in notation

24If demands have zero L2 norm, traders never trade, and the price process approaches a Brownian
motion with variance zero.
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I suppress the modulo term inside of demand, as well as integrals over S \ (q, t):

ET[x(pq, r
1)x(pt, r

1)] =

∫ ∞
−∞

∫ ∞
−∞

x

(
r1 − pq
ε

)
x

(
r1 − pt
ε

)
h(r1)dr1fT(pqt, ·)dpqt

=

∫ ∞
−∞

∞∑
`=−∞

∫ pq+(`+1)ε

pq+`ε

x

(
r1 − pq
ε

)
x

(
r1 − pt
ε

)
h(r1)dr1fT(pqt, ·)dpqt

=

∫ ∞
−∞

∞∑
`=−∞

∫ 1

0

x (u)x

(
u+

pq − pt
ε

)
h(ε(u+ `) + pq)εdufT(pqt, ·)dpqt

=

∫ ∞
−∞

∫ 1

0

x (u)x

(
u+

pq − pt
ε

) ∞∑
`=−∞

h(ε(u+ `) + pq)εdufT(pqt, ·)dpqt

where, like before, the third equality follows from a change of variable u = r1−pq
ε
− `, and

the fourth equality follows from dominated convergence, which I can invoke due to A6

and the Cauchy-Schwarz inequality:

∫ 1

0

∣∣∣∣x (u)x

(
u+

pq − pt
ε

) ∣∣∣∣du ≤
(∫ 1

0

∣∣∣∣x (u)

∣∣∣∣2du · ∫ 1

0

∣∣∣∣x(u+
pq − pt
ε

) ∣∣∣∣2du
)1/2

By Fubini’s Theorem I can change the order of integration, and the covariance expression

becomes:

=

∫ 1

0

∫ ∞
−∞

x (u)x
(
u+

pqt
ε

) ∞∑
`=−∞

h(·)εfT(pqt, ·)dpqtdu

=

∫ 1

0

∞∑
k=−∞

∫ ε(k+1−u)

ε(k−u)
x (u)x

(
u+

pqt
ε

) ∞∑
`=−∞

h(·)εfT(pqt, ·)dpqtdu

=

∫ 1

0

∞∑
k=−∞

∫ 1

0

x (u)x (v)
∞∑

`=−∞

h(ε[v + `] + pt)εfT(ε[v − u+ k], ·)εdvdu

=

∫ 1

0

∫ 1

0

x (u)x (v)
∞∑

`=−∞

h(ε[v + `] + pt)ε
∞∑

k=−∞

fT(ε[v − u+ k], ·)εdvdu

→
∫ 1

0

∫ 1

0

x (u)x (v) dvdu

∫ ∞
−∞

fT(x∗, ·)dx∗

=

∫ 1

0

x (u) du

∫ 1

0

x (v) dv

∫ ∞
−∞

fT(x∗, ·)dx∗ = 0

where the third equality again follows from a change of variable v = u + pqt
ε
− k, and

the fourth equality from dominated convergence. The asymptotic result as ε → 0 is an
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application of the Riemann sum technique, and the final equality follows from centered

demand, A7.
∫∞
−∞ fT(x∗, ·)dx∗ denotes the marginal density obtained after integrating

out pqt. While the sum over h(·) is dealt with similarly to previous proofs, the Riemann

sum over fT(·) is handled with caution because the random variable (v − u) has a range

of two. Formally, I split the sum:

∞∑
k=−∞

fT(ε[v − u+ k], ·)ε =
∞∑

k=−∞

fT(ε[v − u+ 2k], ·)ε+
∞∑

m=−∞

fT(ε[v − u+ 2m+ 1], ·)ε

Then with a step size of 2ε and the Riemann partitions:

x∗k = ε(v − u+ 2k) x∗m = ε(v − u+ 2m+ 1)

xk−1 = (2k − 1)ε xm−1 = 2mε

xk = (2k + 1)ε xm = (2m+ 2)ε

I conclude that each sum approaches 1
2

times the marginal density, or the total sum

approaches the marginal density. Next I use an explicit bound on the Taylor series error

term, ET[ξ(n, s)], from Durrett (2017) Lemma 3.3.19:25

|ξ(n, s)| ≤ min

 s3

6n3/2

∣∣∣∣∣
t2−1∑
t=t1

cx(pt, r
1)

∣∣∣∣∣
3

,
s2

n

∣∣∣∣∣
t2−1∑
t=t1

cx(pt, r
1)

∣∣∣∣∣
2


The bound is particularly useful for showing that nET[ξ(n, s)] → 0 as n → ∞. To see

why, notice that the second argument of the min{·} function combined with A6 implies

that nET[ξ(n, s)] is bounded; I can now apply dominated convergence. Then the first

argument of the min{·} function implies nET[ξ(n, s)] → 0. I can now take the limit as

n→∞ of the entire characteristic function:

lim
n→∞

(
1− s2

2n
(t2 − t1) +

nET[ξ(n, s)]

n

)n
= exp

(
−s

2

2
(t2 − t1)

)
which follows from the definition of the exponential function, ex. This is the character-

istic function of the N(0, t2 − t1) distribution, as desired.

To prove the independence of price increments, I show the independence of arbitrary

25More generally |eix −
∑n
m=0

(ix)m

m! | ≤ min{ |x|
n+1

(n+1)! ,
2|x|n
n! }.
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czn(pt,r)√
n

and czn(pq ,r)√
n

; these steps are similar to those detailed above.26 Two random

variables are independent if and only if their characteristic functions satisfy:

ϕ(s1, s2) = ϕ(s1)ϕ(s2)

where ϕ(s1) is the characteristic function of normalized demand evaluated at pt, and

ϕ(s2) is the characteristic function of normalized demand evaluated at pq. I begin with

the joint characteristic function:

ϕn,ε(s1, s2) = E

[
exp

(
cis1√
n
zn(pt, r) +

cis2√
n
zn(pq, r)

)]
≈
∫ ∞
∞

(∫ ∞
−∞

exp

(
cis1√
n
x(pt, r

j) +
cis2√
n
x(pq, r

j)

)
h(rj)drj

)n
fT(pqt)dpqt

In the approximate equality, I have used the i.i.d. assumption A4 on the random variable

rj, as well as the independence of general price increments pt+s− pt and reference points

rj from Lemma 2. A Taylor series expansion with zero mean yields:(
1− c2

n
ET

[
1

2
s21x(pt, r

j)2 + s1s2x(pt, r
j)x(pq, r

j) +
1

2
s22x(pq, r

j)2
]

+ ET[ξ(n, s1, s2)]

)n
→
(

1− s21
2n
− s22

2n
+ ET[ξ(n, s1, s2)]

)n
where the asymptotic result is for small ε, I have normalized variance to one using the

constant c, and the covariance term is zero by previous arguments. I can rearrange terms:

ϕn(s1, s2) =

(
1− s21

2n
+ ET [ζ(n, s1, s2)]

)n(
1− s22

2n

)n
The term in the second set of large parentheses converges to the correct limit, but I need

to ensure that the term in the first set of large parentheses converges to exp(−s21/2). I

explicitly write out the new error term:

ET [ζ(n, s1, s2)] =
1

1− s22/(2n)

(
ET [ξ(n, s1, s2)]−

s21s
2
2

4n2

)
Following previous arguments, nET[ζ(n, s1, s2)] tends to zero by the Durrett bound and

the dominated convergence theorem; therefore, the desired result holds for large n and

26While it may seem that zero covariance is sufficient to conclude independence of two normal random
variables, this in fact requires the random variables be multivariate normal. This has yet to be shown.
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the proof is complete:

ϕn(s1, s2)→ e−s
2
1/2 · e−s22/2

Appendix E

To numerically test the difference between the dynamical system and a Brownian motion,

I choose to run the Kolmogorov-Smirnov test, which works in the following way. First

define the empirical distribution for i.i.d. draws (Xt)
T
t=1 as:

FT (x) =
1

T

T∑
t=1

1[−∞,x](Xt)

The test then calculates the distance:

DT = sup
x
|FT (x)− F (x)|

where F (x) is the true distribution function. Here, F (x) is the standard normal distribu-

tion, and Xt are the price increments generated by the dynamical system, Xt = pt+1−pt.
Notice I am jointly testing for independence and normality of price increments, which

together satisfy the definition of the discrete time Brownian motion. I test the null hy-

pothesis that the data come from a standard normal, and use the cutoff p = 0.05 to reject

the null hypothesis. It turns out that, when the dynamical system has been run for few

periods and T is small, the test consistently fails to reject the null. For higher values of

T , the test often rejects the null. In Table 1, I show the values of n and ε for which the

test fails to reject the null more often than not at the specified value of T .

Traders n Coarseness ε

T = 5 15 100
T = 75 1000 1
T = 150 106 10−6

Table 1: Kolmogorov-Smirnov Test

The Motivating Example (with ε = 100) can be easily distinguished, even with the naked

eye, from a Brownian motion. The Motivating Example (with ε = 1) cannot be distin-
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guished from a Brownian motion when T = 75 iterations are considered. Beyond these

examples, the table gives a sense of the rate of convergence of the dynamical system to

a Brownian motion.

Appendix F

Consider an economy with n < ∞, ε > 0, and the realization r is known to an omni-

scient econometrician. A deterministic dynamical system is typically classified as chaotic

if it has sensitivity to initial conditions. The Lyapunov exponent is the mathematical

object that characterizes the rate of separation of infinitesimally close trajectories. For

a discrete dynamical system, it is defined:

λ(X0) = lim
T→∞

1

T

T−1∑
t=0

ln|f ′(Xt)|

where the dynamical system starts at X0 and is described by Xt+1 = f(Xt). In the

current model, Xt = pt+1 − pt are price increments. A positive Lyapunov exponent is

typically taken as an indication of chaos, and numerical tests confirm that the exponent

is well above zero for the current model calibrated exactly as in the Motivating Example

(with ε = 1). Instead of showing the details of such numerical tests, I visually show what

sensitivity means for the dynamical system in Figure 10.

The three price paths were calculated using the same draw of reference points rj. In other

words, the dynamical system was held constant across the three price paths. The only

difference between the paths was that one begins at p0 = 999.99, another at p0 = 1000,

and the third at p0 = 1000.01. These small differences in starting point are visually

indistinguishable at first, but lead to entirely different price paths, hence the terminol-

ogy “sensitivity to initial conditions.” Although the paths in Figure 10 may resemble

stochastic processes, non-asymptotic versions of the model with fixed r are chaotic but

perfectly deterministic.

Appendix G

The proof of Proposition 2 will proceed in three steps. First I show that demands

evaluated at two different prices are independent. Then I pin down the market maker
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Figure 10: Sensitivity to Initial Conditions

functional form and directly invoke the generalized central limit theorem to show that

aggregated demand converges to a stable-α distribution. The desired result then follows

almost immediately. For brevity of notation, I suppress the modulo term inside of de-

mand. h(rj) denotes the density of reference points, and fT(pqt) denotes the density of

price increments pqt ≡ (pq − pt), which for now I guess exists.27 By the asymptotic inde-

pendence of price increments and reference points from Lemma 2, which only required

A1-A5, I can write the joint characteristic function of demand evaluated at two different

prices pq and pt as:

ϕn,ε(s1, s2) ≈
∫ ∞
−∞

∫ ∞
−∞

exp

[
is1x

(
rj − pq
ε

)
+ is2x

(
rj − pt
ε

)]
h(rj)drjfT(pqt)dpqt

=

∫ ∞
−∞

∞∑
`=−∞

∫ pq+(`+1)ε

pq+`ε

exp

[
is1x

(
rj − pq
ε

)
+ is2x

(
rj − pt
ε

)]
h(rj)drjfT(pqt)dpqt

=

∫ ∞
−∞

∞∑
`=−∞

∫ 1

0

exp

[
is1x(u) + is2x

(
u+

pq − pt
ε

)]
h(ε[u+ `] + pq)εdufT(pqt)dpqt

=

∫ ∞
−∞

∫ 1

0

exp

[
is1x(u) + is2x

(
u+

pq − pt
ε

)] ∞∑
`=−∞

h(ε[u+ `] + pq)εdufT(pqt)dpqt

where I have used a change of variables, u = rj−pq
ε
−`, in the third equality, and dominated

27Stable-α distributed price increments do not always have a closed form density. However, stable
distributions are absolutely continuous, so a density does exist.
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convergence in the fourth equality. Next I apply Fubini’s Theorem to flip the order of

integration:∫ 1

0

∫ ∞
−∞

exp
[
is1x(u) + is2x

(
u+

pqt
ε

)] ∞∑
`=−∞

h(·)εfT(pqt)dpqtdu

=

∫ 1

0

∞∑
k=−∞

∫ −εu+(k+1)ε

−εu+kε
exp

[
is1x(u) + is2x

(
u+

pqt
ε

)] ∞∑
`=−∞

h(·)εfT(pqt)dpqtdu

=

∫ 1

0

∞∑
k=−∞

∫ 1

0

exp [is1x(u) + is2x(v)]
∞∑

`=−∞

h(ε[v + `] + pt)εfT(ε[v − u+ k])εdvdu

=

∫ 1

0

∫ 1

0

exp[is1x(u)]exp[is2x(v)]
∞∑

`=−∞

h(x∗`)ε
∞∑

k=∞

fT(x∗k)εdvdu

where, as before, the second equality follows from a change of variables v = u+ pqt
ε
−k, and

the third equality follows from dominated convergence. By the Riemann sum technique,

the characteristic function converges to:

ϕn,ε(s1, s2)→
∫ 1

0

exp[is1x(u)]

∫ 1

0

exp[is2x(v)]dvdu

as ε → 0. This concludes the proof of independence, which is if and only if ϕ(s1, s2) =

ϕ(s1)·ϕ(s2). In the next step, I consider the market maker constant an. Normalized excess

demand anzn(pt, r) cannot converge to a constant, for this would violate A1. Then, by

A2, it converges to a nondegenerate distribution. By the Durrett necessary and sufficient

condition from Lemma 1, it must then converge to a stable distribution. Furthermore,

in the small ε limit:

P

(∣∣∣∣x(mod

[
rj − pt
ε
− 1

2
, 1

]
− 1

2

) ∣∣∣∣ > y

)
=

∫ ∞
−∞

1
{|x
(
mod

[
rj−pt
ε
− 1

2
,1
]
− 1

2

)
|>y}

h(rj)drj

=
∞∑

`=−∞

∫ ε(`+1)+pt

ε`+pt

1
{|x
(
mod

[
rj−pt
ε
− 1

2
,1
]
− 1

2

)
|>y}

h(rj)drj

=
∞∑

`=−∞

∫ 1

0

1{|x(mod(u−0.5,1)−0.5)|>y}h(ε[u+ `] + pt)εdu

=

∫ 1

0

1{|x(mod(u−0.5,1)−0.5)|>y}

∞∑
`=−∞

h(ε[u+ `] + pt)εdu

→
∫ 1

2

− 1
2

1{|x(u)|>y}du
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where the third equality follows from a change of variables u = rj−pt
ε
− `, and the fourth

equality follows from dominated convergence. By A6′, the last term asymptotically ap-

proaches ky−α as y →∞. By the Mikosch necessary and sufficient conditions, aggregate

demand can only converge to a stable-α distribution, where α is given in A6′. Without

loss of generality, I set the market maker constant to an = cn−1/α which, along with

A4, A6′ and A7′, are sufficient to invoke the generalized central limit theorem from Dur-

rett (2017) Theorem 3.8.2, the result of which guarantees convergence of the normalized

sum of i.i.d. random variables to the stable-α distribution. The limiting characteristic

function of normalized aggregate demand evaluated at any price is given by:28

ϕn(s)→ exp(−|s|α)

Putting these arguments together, the price increment over multiple time periods pt2−pt1
has the following characteristic function:

ϕn,ε(s) = ET

[
exp

(
is

t2−1∑
t=t1

an

n∑
j=1

x(pt, r
j)

)]
→ exp(−|s|α)t2−t1

= exp(−(t2 − t1)|s|α)

where the asymptotic result invokes both independence of demands at different prices

and the generalized limit theorem.

Appendix H

In this alternative interpretation of the model, I assume traders receive utility and disu-

tility from trade according to:

u(rj, pt, xt) = (Ẽj[pt+1|pt]− pt)xt − L(xt, ε)

The interpretation is as follows: traders receive disutility from trading with coarse ex-

pectations parametrized by ε, and this is captured by the loss term on the right-hand

side of the equation above. Traders realize they may be erring by using “rules of thumb.”

28My assumptions allow simplification of the general form ϕ(s) = exp(isµ− b|s|α[1 + iksgn(s)wα(s)]).
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Demand is then implicitly defined by:

L′(xt, ε) = Ẽj[pt+1|pt]− pt

where the derivative is taken with respect to the first argument. Now assumption A3,

risk-neutrality, can be rewritten as L′(xt, ε) ∼ L′(xt)ε. The intent of the assumption is

exactly as before: traders must trade a nonzero and finite amount. Since the utility term,

(Ẽj[pt+1|pt] − pt)xt, is O(ε), the disutility term must also be on the same order if this

requirement is to be met. For small ε, I implicitly define demand as before:

L′(xt) =
Ẽj[pt+1|pt]− pt

ε
(9)

Albeit mathematically equivalent, these two assumptions, ρ ∼ ε and L′(xt, ε) ∼ L′(xt)ε,

carry different interpretations. The latter says the following: traders with small ε, and

hence more accurate expectations, also trade more sensitively to price. This can be seen

in condition (9): a small ε in the denominator amplifies price changes. Although ex-

pectations are more likely to be correct, when they are incorrect, these traders trade

aggressively to exploit the perceived mispricing. This is my preferred interpretation over

mean-variance traders, who were introduced only for familiarity. In summary, trader

preferences cannot depend on any moments higher than the first, which are undefined

when α < 2 and prices have heavy tails.

Appendix I

Consider an economy with heterogeneous ε. I evaluate the more tractable Brownian

case assuming A1-A7; however, analogous arguments apply in the heavy-tailed case. Say

εi = εβi for some heterogeneous βi, and furthermore, say that there are only a finite

number I of groups. That is, ni(n) traders use partitions with coarseness εβi. I let

γi = limn→∞ n
i(n)/n > 0, which denotes the proportion of traders of type i. I suppress

the dependence on n for brevity. Normalized aggregate demand is given by:

czn(pt, r)√
n

=
c√
n

n1∑
j=1

x1(pt, r
j) + ...+

c√
n

n∑
j=n−nI+1

xI(pt, r
j)

≈c
√
γ1

n1

n1∑
j=1

x1(pt, r
j) + ...+ c

√
γI

nI

n∑
j=n−nI+1

xI(pt, r
j)
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where the approximate equality follows from the definition of γi. Prices are still non-

revealing due to Lemma 2, and by the arguments provided in Appendix G, aggregate

demands evaluated at different prices are independent when each group is analyzed sep-

arately. Now fix a price pt. Excess demands for each group are independent from one

another by construction, but now they are not guaranteed to be identically distributed;

in general, they will not be. Applying the Lindeberg-Lévy theorem to each group, each

is normally distributed N(0, σ2(βi, γi)), where the variance depends on (βi, γi). But the

sum of independent normally distributed random variables is also normally distributed

N (0,
∑

i σ
2(βi, γi)). The market maker constant c can then be used to normalize this

summed variance as desired, and the price process converges in distribution to a discrete

time Brownian motion. This additional source of heterogeneity contributes nothing to

the non-revealing nature of prices; this last exercise was simply a check for robustness.
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